逗比小说网

手机浏览器扫描二维码访问

第三百八十一章 拓扑学拓扑学(第1页)

1966年,英国拓扑学家马克·阿姆斯特朗对自己的老师知名拓扑学家ErikZeeman说:“拓扑学是如何开始的?”

ErikZeeman说:“从欧拉的七桥定理开始的,从这个中间把七桥的模型画成图论,从图论中分析出拓扑等价。”

马克说:“听起来很简单,那如何去研究拓扑学呢?”

ErikZeeman说:“主要就是分类,对不同的拓扑结构进行分类。分类出很多曲面,对曲面解构成抽象空间,然后找到拓扑不变量去分类。”

马克说:“那要分类很多曲面,是什么曲面?有标准吗?”

ErikZeeman说:“是的,要严格的连续曲面,不能是离散的。”

马克说:“如何说明是连续的?”

ErikZeeman说:“就跟我说的一样,这是一个抽象空间,这个空间需要由开集和闭集这样的东西给组成。然后开集和闭集需要引入连续映射系统来完整这个函数的描述。”

马克说:“为什么要用开集和闭集这样的东西?”

ErikZeeman说:“因为严格。如果使用几何、数字、符号或者是其他的描述拓扑的系统,都缺乏严格性。如果时间久了会出现很多我们不想要的漏洞。”

马克说:“我明白了。”

ErikZeeman说:“在这样的前提下,就可以大胆的研究映射,让曲线充分的施展开来。可以让普通的曲线因为映射充满整个空间。同时开始使用Tietze扩张定理。”

马克说:“扩张?如何扩张?”

ErikZeeman说:“是R的n维空间的有理点集,扩张到整个空间。”

马克说:“扩张到所有的无理点集?”

ErikZeeman说:“恩,是这个意思。”

马克说:“不错,可是刚刚说的这个开集和闭集,这个如何算严格,怎么去连续,变得光滑?”

ErikZeeman说:“需要有紧致性和连通性,加有界闭集这种概念。闭集是bai两边类似[1,10];有界集两边是(1,10],[1,10)两种。”

马克说:“有界之后,如何紧致化?”

ErikZeeman说:“这是海涅-博雷尔定理或有限覆盖定理、定理的主要内容是度量空间的子集是紧致的,当且仅当它是完备的并且完全有界的。”

马克说:“是子集紧致就行吗?那能不能在详细一些,紧致空间的性质是什么?”

ErikZeeman说:“紧致性本质上是有限性条件,有限性条件破解类似一日之椎,日取其半,万世不可遏这样的意思。假如孙悟空在如来的手掌心翻跟斗,跟斗云是一个任意序列,停在如来的手指旁是存在一个子列收敛,留下到此一游的字和撒尿是在一个有界的闭集里。或者一个瓶子里装高尔夫球后,可以装石子,然后还可以装沙子,最后还可以装水,这都说明原来的东西不够紧。这些都可以作为例子来想。”

马克说:“不错,这个解释变得清晰了一些。”

ErikZeeman说:“然后,就需要了解乘积空间。”

马克说:“乘积空间是干什么的,是要把拓扑空间乘起来吗?”

ErikZeeman说:“没错,打个比方,就是R的n维空间是n个R直线乘起来的。”

马克说:“这个是在高维度实数坐标中的一种比喻。”

ErikZeeman说:“现在开始研究连通性。如果非空的A和B都是分离并,他们都在X中,一般是不连通的。”

马克说:“什么?”

ErikZeeman继续说:“如果X让分离并连通了,就称之为连通的。”

马克说:“R的n维空间是连通的吗?”

ErikZeeman说:“是连通的。”

ErikZeeman:“拓扑世界有两种,一个是连通,一个是不通。”

马克说:“如何去判定这些?”

ErikZeeman:“比如一个实心圆球内部是处处通,若有一个洞,这个洞不通。”

马克觉得研究拓扑,终归就是说很多东西是不是等价的,或者是符合什么什么特性的,他说:“为了这是干嘛?是为了给各种不同的拓扑进行分类?这是最合理的分类方法?”

ErikZeeman:“没错,之后谈拓扑分类时,都是用道路连通性这类符号去运算各种东西的。毕竟拓扑不看尺寸的长短和面积的大小之类的东西。计算的是一种性质,类似洞数等等之类的,同时也要研究这些不同拓扑直接是否是同一种类型。”

马克说:“然后运算是如何远算的?有四则运算这种吗?”马克脑子里有点晕,在想数字计算的事情,没有用心问问题。

ErikZeeman:“拓扑中远算往往要做一些工作,一般讲一些复杂形状是如何用简单形状组成的。但此组成也不像简单的垒积木和焊接那么简单。”

攻略对象变成室友后,他不对劲  夸夸我的神探祖父穿越爹  我真没想在过去的年代当学霸  死神不来了  杀了那个妖鬼  怪物崽崽和他的怪物监护人  穿到虫族和军雌相亲  小仓鼠今天有猫了吗  第三十年明月夜  君为客  新搬来的邻居  末世后我成了疯批alpha们的安抚剂  枭鸢  上流假象  神魔剑玄录  我在死亡副本当管理员  撩惹疯批顶E,笨蛋少爷他逃了  还是修仙吧  兽世养山君[种田]  迷津蝴蝶  

热门小说推荐
墨门飞甲

墨门飞甲

关于墨门飞甲面对墨门传功长老给出的选择,林木森痛哭流涕教练,我想玩飞剑老子用弩一样弄死你!林木森看着脚下的BOSS尸体,气势汹汹。卧槽,以为老子的机关螳螂是摆设?林木森面前的玩家,被机关...

兵器大师

兵器大师

这世上没有人是废物,每个人都有着不同的天赋,有的人善于计算,或记忆超群,或逻辑慎密而有一些,他们天赋异禀,能徒手掀翻汽车,脚步如飞,或者玩弄水火人心。而我的天赋。夏亦抚过摆在兵器架上的一件件珍藏品霜之哀伤青龙偃月混沌双刃金箍棒我要打十个!如果您喜欢兵器大师,别忘记分享给朋友...

主母偷听心声杀疯了,我喝奶躺赢

主母偷听心声杀疯了,我喝奶躺赢

简介沈婧清穿书后,成了庆元侯府嫡出千金。谁知运气不好,还是书中的小炮灰,而那个借运的私生女顶替了她一切的,还被两个亲哥哥千娇万宠。沈婧清发誓,这一次要夺回属于自己的一切。沈婧清吐槽不断,却没发现被偷家了。长着长着,发现一切的剧情都跟原来背离娘亲哥哥们,变成腹黑主母偷听心声杀疯了,我喝奶躺赢推荐地址...

撩妹兵王在都市

撩妹兵王在都市

简介彪悍兵王周天回归都市,美女纷纷暗送秋波!能力越大,责任越大,他不羁的外表之下,心底热血未冷,当昔日兄弟有难,组织召唤,他再次出征,一双铁拳,再战天下!如果您喜欢撩妹兵王在都市,别忘记分享给朋友...

重生科技学霸

重生科技学霸

学霸?还是科技?从学霸到科技学霸,这是一个从学霸开始的故事!。。。。扣扣群984133864如果您喜欢重生科技学霸,别忘记分享给朋友...

捉鬼灵异见闻

捉鬼灵异见闻

一场设局差点使我被炼成小鬼!一个二十二岁就死去的鬼咒如蛆附骨!一本鬼经,让我救出陷入诡异迷局的众多小伙伴女朋友同学学姐一只女鬼甘愿做我的鬼仆,而我却将她当成一只奶牛!...

每日热搜小说推荐