逗比小说网

手机浏览器扫描二维码访问

第六百零九章 最脆弱的素数数论(第1页)

1978年,数学家发现了一种十分“脆弱”的素数,任意改变其一位数就会变成合数,它们被称为“易损素数”。

近期,数学家找到了更多的“易损素数”,而这一概念也被再一次扩展……

让我们来看看以下几个数字,试试看能否发现它们的特别之处:、、。

你可能会注意到它们都是素数(只能被自己和1整除),但其实这几个数的不寻常之处远不止如此。如果我们选取这几个数字中的任意一位进行更改,新得到的数字就成为了一个合数,比如将中的1改成7,那么得到的数字就可以被7整除,改成9,则可以被3整除。

这些数字被称为“易损素数”,它们是相对较新的数学发现。1978年,

数学家默里·克拉姆金(MurrayKlamkin)提出了这一类素数的猜想,之后迅速得到了有史以来发表论文数量最多的数学家保罗·埃尔德什(PaulErd?s)的回答,他不仅证明了易损素数确实存在,而且证明了它们的数量是无限的。后来,其他数学家进一步扩展了埃尔德什的结果,其中就包括菲尔兹奖章得主陶哲轩,他在2011年的一篇论文中证明了易损素数之间是呈“正比例”的。这意味着,随着素数本身变大,连续两个易损素数之间的平均距离保持稳定。也就是说,易损素数并不会变得越来越稀少。

在近期发表的两篇论文中,南卡罗来纳大学的迈克尔·菲拉塞塔(MichaelFilaseta)更进一步地阐述了这一观点,并提出了一类结构更为精妙的易损素数。

他受到埃尔德斯和陶哲轩工作的启发,设想将一个无限长的前导零串作为素数的一部分,就像数字53和…0000053的值是一样的,那么如果改变一个易损素数前无限的零中的任意一个,素数会变合数吗?菲拉塞塔假定这些数字是存在的,并将其称为“广义的易损素数”。

2020年11月,他与研究生耶利米·索斯威克(JeremiahSouthwick)共同发表了一篇论文来探究这些数字的性质。这项结果得到了乔治亚大学数学系教授保罗·波拉克(PaulPollack)的盛赞。

显而易见,这样的数字比原来的易损素数更加难找。波拉克说:“是一个易损素数,但并不是一个广义上的易损素数,因为如果我们把…000变为…0,得到的并不是合数,而是另一个素数。

事实上,菲拉塞塔和索斯威克找遍了1000000000以内的所有整数,也没有在十进制下找任何一个广义的易损素数。然而,这并没有阻止他们继续寻找的脚步。

经过不懈的探索,他们证明了这样的数字在十进制的情况下确实是可能存在的,而且还会有无穷多个。更进一步,他们还证明了广义的易损素数同样是呈正比例的,就像陶哲轩的结论那样。之后,在索斯威克的博士论文中,他在2、9、11和31进制上获得了相同的结果。波拉克对这些发现印象深刻,他说:“对于这些数字,你可以做无限多可能的改变,然而不管你做哪一个改变,你得到的始终是一个合数。”

证明过程主要依靠两种工具,第一种被称为覆盖同余(coveringsystems),是由埃尔德什在1950年发明的,目的是解决一个数论中的问题。索斯威克说:“覆盖同余能够提供大量的分组,同时保证每个正整数至少在其中一个分组中。”例如,如果将所有正整数除以2,我们就能得到两个分组:一组偶数,一组奇数。这样即可“覆盖”所有的正整数,而在同一组内的数字则被认为彼此是“一致”的。当涉及的数字量十分大时,也就是面对寻找广义易损素数时,情况会显得更为复杂。我们需要更多的分组,大约个,在这些分组内的每一个素数都要保证,在增加了任意一位的数字,包括前面的零之后,能够变成合数。

但为了找到广义的易损素数,这些数中的任何一位数字减少后,也必须变成合数。这就是第二种工具,称为筛分法。筛分法最早可以追溯到古希腊,它提供了一种计算、估计或设置满足某些性质的整数个数限制的方法。菲拉塞塔和索斯威克使用了一个筛分参数,类似于陶哲轩在2011年采用的方法,也就是如果你在前面提到的组中取素数并减少其中的一个数字,会有呈正比的素数变成合数。换言之,广义的易损素数也是呈正比的。

然后,在一月份的一篇论文中,菲拉塞塔和他现在的研究生雅各布·朱伊拉特(JacobJuillerat)提出了一个更加惊人的观点:存在任意长的连续素数序列,其中每个数字都是广义的易损素数。例如,有可能找到10个连续的广义易损素数。但这必须得检验大量的素数,菲拉塞塔说,“这一数量可能比可观测宇宙中的原子数还要多。”他把这比作连续10次中彩票,虽然概率特别小,但是依旧是有可能的。

本小章还未完,请点击下一页继续阅读后面精彩内容!

菲拉塞塔和朱伊拉特分两个阶段证明了他们的定理。首先,他们使用覆盖同余来证明存在一个包含无限多个素数的分组,分组内的所有数字都是易损素数。在第二步中,他们应用了丹尼尔·邵(DanielShiu)于2000年证明的一个定理:在所有的素数中,存在任意数量的连续素数属于上述的分组中。这也就能够进一步说明,这些连续的素数必然是广义的易损素数。

达特茅斯学院的卡尔·波默朗斯(CarlPomerance)非常喜欢这些论文,他称赞菲拉塞塔是应用覆盖同余的大师。同时,他还指出,用十进制来表示一个数字可能会很方便,但这并不符合数字的本质。他认为,还有更基本的方法来表示数字,比如梅森素数的定义——素数p的表现形式为2p–1的素数。

在之前的研究基础上,最近的一些相关论文提出了更多值得探讨的问题。比如,每一种进制下是否都存在广义的易损素数?当在两个数字之间插入一个数字,而不是仅仅替换一个数字时,是否会有无穷多的素数变成合数?

此外,波默朗斯还提出了另一个有趣的问题:当数字接近于无穷大时,是否所有的素数都会变为(广义)易损素数?这是否也就意味着,非(广义)易损的素数个数是有限的?尽管他和菲拉塞塔都还没有想到办法来证明这个猜想。

波默朗斯说:“数学研究的魅力就是你事先不会知道你是否能够解决一个具有挑战性的问题,或者这个问题是否是有意义的。就像你不能提前决定:今天我要做一些有价值的事情,因为你不知道在数学研究中,什么事情才是有价值的,你只能去不断思考,不断尝试。”

喜欢数学心请大家收藏:()数学心

怪物崽崽和他的怪物监护人  末世后我成了疯批alpha们的安抚剂  死神不来了  还是修仙吧  夸夸我的神探祖父穿越爹  我在死亡副本当管理员  君为客  上流假象  穿到虫族和军雌相亲  杀了那个妖鬼  撩惹疯批顶E,笨蛋少爷他逃了  第三十年明月夜  我真没想在过去的年代当学霸  兽世养山君[种田]  新搬来的邻居  迷津蝴蝶  枭鸢  神魔剑玄录  小仓鼠今天有猫了吗  攻略对象变成室友后,他不对劲  

热门小说推荐
傅爷怀里的假千金真绝了

傅爷怀里的假千金真绝了

前世的时瑾不仅是公认的恋爱脑大花瓶,更是时家抱错的假千金,落了个惨死的下场。重生后的时瑾,控干了脑子里的水分,智商上线,抱紧金大腿,展事业虐渣两不误。一无所知的众人,还在等着看她闹笑话。真千金只要时瑾肯留下,我还缺一个保姆。未婚夫父辈订好的婚约怎么能够不作数?必须和真千金履行婚约。时家众人离开了时家,看她怎么在娱乐圈混?黑粉被潜规则就是她唯一的宿命!不久后。时瑾因为和国际富吃饭被拍而被黑上热搜,众人嘲笑她果然只能靠身体混圈。国际富和亲生妹妹吃饭有问题?a时瑾时瑾和级国际巨星出入酒店,被狗仔追了三天三夜。国际巨星和亲生女儿讨论剧本有问题?a时瑾某天,时瑾被某国际神秘大佬按在墙上,吻得眼尾泛滥起绯红。记者撞见后,纷纷收起了相机亲戚?试戏试得有点过啊!!!神秘大佬亲自己老婆有问题?a时瑾...

宠婚似火:慕少娇妻18岁

宠婚似火:慕少娇妻18岁

关于宠婚似火慕少娇妻18岁第一次见他,这个禽兽,欺负她!第二次见他,妈蛋,趁火打劫老娘的坏人第三次见他,这个恶魔!坑货!第四次见他,救我就是为了钱!混蛋!嘤嘤嘤!陆音离怎么想都觉得自己的人...

龙图腾II

龙图腾II

主人公夏海当过兵,却得罪了人,落个退役的下场,夏海人很热心,可是却也坏在热心上面。一次偶然的见义勇为却不想成了穿越大军的一员,来到了远古时代,但是,夏海却发现,这里并不原始。这里有着大大小小的部落。这里已经有了大的部落联盟,或者称呼为诸侯国也不错。这里是一个实力为尊的世界,这个世界的个体力量几乎异常的强大。夏海该如...

快穿之奈何反派不做人

快穿之奈何反派不做人

系统世间万物,善恶只在一念之差,善可恶,而恶周小舟该揍该杀该灭!系统恶,也可回头是岸,重新做人,为时不晚。周小舟懂了,反派,快住手,放下屠刀!反派滚!周小舟好哒。反派滚回来!周小舟给你脸了是不是!信不信我教你重新做人!如果您喜欢快穿之奈何反派不做人,别忘记分享给朋友...

五爷又想静静了

五爷又想静静了

古穿今的静妃只想岁月静好vs五爷一心要拉静妃上天。静妃,曾经也算宠妃,皇帝死后她又活了五十年,没想到眼一闭一睁,成了十八岁的小姑娘。只是这姑娘太惨了点。静妃娘娘当务之急,得活下来。姜黼,一个活着的传奇,名门望族姜家又一位无冕之王。年仅二十八岁集中西医于大成,但医者不自医,算命的都说他活不过三十岁。姜五爷眼看要上天了,天上掉下个静妃娘娘。本书又名你就是我的命静妃娘娘静静的,我像乌龟还能再活八百年。姜五爷姑娘,醒醒,春天到了。如果您喜欢五爷又想静静了,别忘记分享给朋友...

我,董卓,爱民如子

我,董卓,爱民如子

我叫董卓,人在汉末,是位穿越者。我很不满意穿越到这个又老又丑的胖子身上,幸好有个特殊的辅助系统。只要我爱民如子,坚定站在贫苦打工人这一无产阶级的阵营,系统就可以帮助我将肥肉变肌肉,胖脸变瓜子脸,实现逆生长和变帅的梦想。我原以为这事儿很简单,没想到那群歪瓜裂枣的手下满堂的士大夫还有各地诸侯,居然敬酒不吃吃罚酒!如果您喜欢我,董卓,爱民如子,别忘记分享给朋友...

每日热搜小说推荐