手机浏览器扫描二维码访问
陈氏定理(1966)每一个充分大的偶数都是一个素数及一个不超过两个素数的乘积之和。简记为(1,2)。
诚如哈贝斯坦(H.Halberstam)与黎切尔特(H.E.Richert)所称,陈氏定理为“惊人的定理”,而且“从筛法的任何方面来说,它都是光辉的顶点”。
陈氏定理与筛法相关,筛法导源于公元前250年的“埃拉朵斯染尼氏(Eratosthenes)筛法”,1919年,布伦(V.Brun)对这一方法作出了重大改进,并将它用于哥德巴赫猜想。1947年,赛尔贝格(A.Selberg)给出了埃拉朵斯染尼氏筛法的另一个重大改进。
哥德巴赫猜想是1742年哥德巴赫与欧拉(L.Euler)的通信中提出来的,可以表述为:每一个不小于4的偶数都是两个素数之和。简记为(1,1)。
1900年,在希尔伯特的着名演讲中,又将这一猜想列入他的23个数学问题中的第八问题。布伦首先证明了:每个充分大的偶数都是两个素因子个数均不超过9的整数之和,简记为(9,9),余类推,(1,1)即表示哥德巴赫猜想对充分大的偶数成立。布伦的方法与他的结果先后被拉代马海尔(H.Rademacher),艾斯特曼(T.Estermann),黎奇(G.Ricci),布赫斯塔布(A.A.Buchstab)与孔恩(P.Kuhn)所改进。
将布伦、布赫斯塔布与赛尔贝格方法相结合,王元改进了布赫斯塔布的结果,他证明了(3,4)(王元,1956)。
再与孔恩方法相结合,他又得到了当时的最佳结果(2,3)(王元,1957)。
处理哥德巴赫猜想的另一途径是,将布伦筛法与林尼(Yu.V.Linnik)的大筛法相结合。首先是雷尼(A.Renyi)于1947年证明了,存在常数c使(l,c)成立,潘承洞与巴尔巴恩(M.B.Barban)独立地确定了c之值,潘承洞的结果如下:(1,5)(潘承洞,1962),(1,4)(潘承洞,1963)。
这是当时的最佳结果,由于邦比里(E.Bombieri)与阿?维诺格拉朵夫(A.I.Vinogradov)对大筛法及算术级数素数分布的均值定理的重大贡献,他们于1965年证明了(1,3),在上述成就的基础上,加上天才的创造,陈景润于1966年证明了(1,2),陈景润的方法在国外称为“转换原理”。
有人问陈景润:“你研究这个1加1等于2,有什么用?”
陈景润慌忙:“貌似没有实际作用,我以后会抓紧时间好好研究有用的东西。”
那个人问:“当真仅仅是为了玩,没有一丁点的用,也就是说数学中也有完全没用的东西?”
陈景润说:“其实我个人以为,如果要是把这样的思维给推广了就可以了,就是加和乘,是一个意思。毕竟任何数字都可以表示成是素数的乘积,那么任何数字都可以表示成是素数的相加,就能找到乘法和加法的关联性。”
那个人说:“那找到乘法和加法的关联性,就算是证明了加法和乘法是一回事,那能做什么?可以让乘法计算器变得跟加法一样简单?”
陈景润说:“在计算上已经有了对数尺,也不知道会不会有其他类型的关联了。但是如果环论是一个加和乘法组成的东西,那必然环论就只剩下一种运算了,那就跟群一样的,如果从一种宏观的构架来看,这算是数学家很了不得的大事。”
那个人说:“环论和群论成为一会儿事,那就不需要环了,环也能用群来表示,这又意味着什么?”
陈景润说:“很简单了,又任何类型的运算方式,都会往群这个方向上转化。多项式就会只剩下一种运算,而多项式这样的代数一阶逻辑谓词这样的表达,将会更加简洁,一阶逻辑谓词只有一种运算,就是或或者且的运算,只用其中一种即可。”
那个人说:“即使你说的很对,但是如果这样下去,就会造成你只有一种运算,但是表达另外一种运算就会显的很繁琐了。”
陈景润说:“是的,让一台电脑只有一个且运算,不见得这个电脑的计算量会减轻,所以在这方面可能没有太大的作用了。”
喜欢数学心请大家收藏:()数学心
攻略对象变成室友后,他不对劲 还是修仙吧 末世后我成了疯批alpha们的安抚剂 杀了那个妖鬼 兽世养山君[种田] 新搬来的邻居 第三十年明月夜 怪物崽崽和他的怪物监护人 穿到虫族和军雌相亲 撩惹疯批顶E,笨蛋少爷他逃了 上流假象 枭鸢 死神不来了 君为客 我真没想在过去的年代当学霸 夸夸我的神探祖父穿越爹 小仓鼠今天有猫了吗 我在死亡副本当管理员 神魔剑玄录 迷津蝴蝶
前世的时瑾不仅是公认的恋爱脑大花瓶,更是时家抱错的假千金,落了个惨死的下场。重生后的时瑾,控干了脑子里的水分,智商上线,抱紧金大腿,展事业虐渣两不误。一无所知的众人,还在等着看她闹笑话。真千金只要时瑾肯留下,我还缺一个保姆。未婚夫父辈订好的婚约怎么能够不作数?必须和真千金履行婚约。时家众人离开了时家,看她怎么在娱乐圈混?黑粉被潜规则就是她唯一的宿命!不久后。时瑾因为和国际富吃饭被拍而被黑上热搜,众人嘲笑她果然只能靠身体混圈。国际富和亲生妹妹吃饭有问题?a时瑾时瑾和级国际巨星出入酒店,被狗仔追了三天三夜。国际巨星和亲生女儿讨论剧本有问题?a时瑾某天,时瑾被某国际神秘大佬按在墙上,吻得眼尾泛滥起绯红。记者撞见后,纷纷收起了相机亲戚?试戏试得有点过啊!!!神秘大佬亲自己老婆有问题?a时瑾...
关于宠婚似火慕少娇妻18岁第一次见他,这个禽兽,欺负她!第二次见他,妈蛋,趁火打劫老娘的坏人第三次见他,这个恶魔!坑货!第四次见他,救我就是为了钱!混蛋!嘤嘤嘤!陆音离怎么想都觉得自己的人...
主人公夏海当过兵,却得罪了人,落个退役的下场,夏海人很热心,可是却也坏在热心上面。一次偶然的见义勇为却不想成了穿越大军的一员,来到了远古时代,但是,夏海却发现,这里并不原始。这里有着大大小小的部落。这里已经有了大的部落联盟,或者称呼为诸侯国也不错。这里是一个实力为尊的世界,这个世界的个体力量几乎异常的强大。夏海该如...
系统世间万物,善恶只在一念之差,善可恶,而恶周小舟该揍该杀该灭!系统恶,也可回头是岸,重新做人,为时不晚。周小舟懂了,反派,快住手,放下屠刀!反派滚!周小舟好哒。反派滚回来!周小舟给你脸了是不是!信不信我教你重新做人!如果您喜欢快穿之奈何反派不做人,别忘记分享给朋友...
古穿今的静妃只想岁月静好vs五爷一心要拉静妃上天。静妃,曾经也算宠妃,皇帝死后她又活了五十年,没想到眼一闭一睁,成了十八岁的小姑娘。只是这姑娘太惨了点。静妃娘娘当务之急,得活下来。姜黼,一个活着的传奇,名门望族姜家又一位无冕之王。年仅二十八岁集中西医于大成,但医者不自医,算命的都说他活不过三十岁。姜五爷眼看要上天了,天上掉下个静妃娘娘。本书又名你就是我的命静妃娘娘静静的,我像乌龟还能再活八百年。姜五爷姑娘,醒醒,春天到了。如果您喜欢五爷又想静静了,别忘记分享给朋友...
我叫董卓,人在汉末,是位穿越者。我很不满意穿越到这个又老又丑的胖子身上,幸好有个特殊的辅助系统。只要我爱民如子,坚定站在贫苦打工人这一无产阶级的阵营,系统就可以帮助我将肥肉变肌肉,胖脸变瓜子脸,实现逆生长和变帅的梦想。我原以为这事儿很简单,没想到那群歪瓜裂枣的手下满堂的士大夫还有各地诸侯,居然敬酒不吃吃罚酒!如果您喜欢我,董卓,爱民如子,别忘记分享给朋友...